

An Coimisiún um Rialáil Cumarsáide

1 Dockland Central, Guild St, Dublin 1 1 Lárcheantar na nDugaí, Sráid na nGildeanna, BÁC 1 Tel | Teil +353 1 804 9600

www.comreq.ie

Site Survey Report

Programme of Measurement of Non-Ionising Radiation

1. Survey Summary

Address of Transmitter Site Surveyed:	DIT Kevin Street, Portobello, Dublin 8
Site Type:	GSM, UMTS, LTE
Survey Date:	19/12/2019

Measurement Location: at point of maximum non-ionising adiation near site) On public footpath on side of New Bride St, opposite transmitter location.
--

Measurement Location	LAT	deg	min	sec	LONG	deg	min	sec
Coordinates:	N	53	20	11.9	W	6	16	8.6

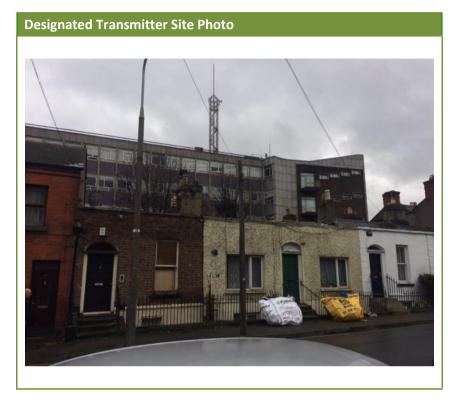
Purpose and Conduct of Survey:

The purpose of this survey was to assess compliance with the limits for general public exposure to non-ionising radiation (NIR) set by the International Commission on Non-Ionising Radiation Protection (ICNIRP) ("ICNIRP Public Exposure Limits").

Compliance with the ICNIRP Public Exposure Limits is a condition of a General Authorisation for an electronic communications network/service as well as of various Wireless Telegraphy licences issued by the Commission for Communications Regulation (ComReg).

The survey was conducted by:

- measuring the overall electromagnetic field (EMF) present at the point of highest exposure in a public area associated with the designated transmitter site;
- identifying the frequency of the principal emissions contributing to the EMF; and
- measuring the intensity (or level) of same.


Overall Conclusions of the Survey				
Frequency Selective Measurements: (Individual emissions measured at specific frequencies)	Below ICNIRP Public Exposure Limits [Compliant]			
Total Exposure Quotient: (Assessment of cumulative emissions from multiple transmitters)	Below ICNIRP Public Exposure Limits [Compliant]			

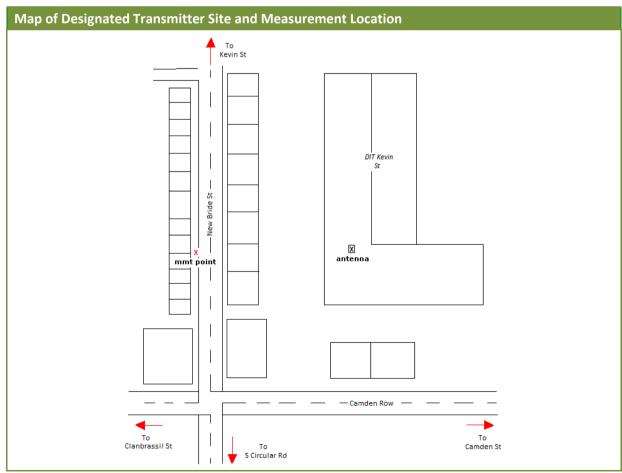
2. Surveyors

Survey conducted for ComReg by: Compliance Engineering Ireland Ltd. ComPLIA NGINEE RELAND

Survey Engineer(s):	Report Writer:	Report Reviewer:
Michael Reilly, BEng	Michael Reilly, BEng	John McAuley, MEng

3. Survey Location Details

Survey Weather


Sky: Cloudy

Temperature:

10 ° C

Relative Humidity:

48 %

4. Introductory Note

Purpose of Survey

The survey of the designated transmitter site ("Designated Site") was commissioned by ComReg as part of its Programme of Measurement of Non-Ionising Radiation. The purpose of the survey was to assess whether NIR (occurring within the radio frequency part of the electromagnetic spectrum) from the Designated Site complied with the limits for general public exposure specified in the guidelines published by ICNIRP ("ICNIRP Public Exposure Limits").1

Compliance with the ICNIRP Public Exposure Limits is a condition of a General Authorisation for the provision of an electronic communications network/service (e.g. mobile phone and broadcasting networks) as well as of various Wireless Telegraphy licences (in respect of transmitting stations) issued by ComReg.

Survey Methodology

Measurements of the NIR from the Designated Site were conducted in accordance with the methodology outlined in ComReg Document 08/51R3². This methodology incorporates many of the measurement methods and procedures outlined in:

- European Electronic Communications Committee (ECC) Recommendation (02)04³;
- European Committee for Electrotechnical Standardisation (**CENELEC**) measurement standard EN 50492:2008⁴, and
- measurement techniques developed by the Institut für Mobil- und Satellitenfunktechnik (IMST) and the EM-Institut on behalf of the German Federal Office for Radiation Protection.⁵

Note re this Report Version

If you have downloaded this report from www.siteviewer.ie or from www.comreg.ie, you are reading an abbreviated version. In addition to sections 1 to 8, the full extended technical version of this report contains a comprehensive technical record of the measurements and any calculations performed, a list of equipment used, as well as a technical appendix. A copy of the extended report is available on request from ComReg.

• "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)", ICNIRP, published in 'Health Physics', April 1998, Volume 74, No. 4: http://www.icnirp.org/documents/emfgdl.pdf

• "Guidelines for Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz to 100 kHz)", ICNIRP, published in 'Health Physics', December 2010, Volume 99, No. 6: http://www.icnirp.org/documents/LFgdl.pdf

² https://www.comreg.ie/publication-download/programme-of-measurement-of-non-ionising-radiation-emissions-methodology-for-the-conduct-of-surveys-to-measure-non-ionising-electromagnetic-radiation-from-transmitter-sites-2">https://www.comreg.ie/publication-download/programme-of-measurement-of-non-ionising-radiation-emissions-methodology-for-the-conduct-of-surveys-to-measure-non-ionising-electromagnetic-radiation-from-transmitter-sites-2">https://www.comreg.ie/publication-download/programme-of-measure-non-ionising-electromagnetic-radiation-from-transmitter-sites-2

³ ECC RECOMMENDATION (02)04, "Measuring Non-Ionising Electromagnetic Radiation (9 kHz – 300 GHz)", ECC, (revised Bratislava 2003, Helsinki 2007): http://www.erodocdb.dk/Docs/doc98/official/pdf/REC0204.PDF

⁴ EN 50492:2008, "Basic standard for the in-situ measurement of electromagnetic field strength related to human exposure in the vicinity of base stations", CENELEC, November 2008: http://www.cenelec.eu

⁵ See: http://www.bfs.de .

¹ Current ICNIRP guidelines:

5. Survey Overview

Survey Stages

In accordance with the methodology outlined in ComReg Document 08/51R3, this survey was conducted in three stages:

- 1 Initial Site Survey
- 2 Full Survey Broadband Measurements
- 3 Full Survey Frequency Selective Measurements

An outline of each stage, along with the results and conclusions of the measurements, are presented in the following three sections.

Measurement of Electromagnetic Fields

Electromagnetic fields (EMFs) can be sub-divided into two components:

- Electric field (E-field) (measured in volts per metre or "V/m"]; and
- Magnetic field (H-field) (measured in amperes per metre or "A/m"].

The E-field and the H-field are mathematically interdependent⁶ in the **radiating near-field**⁷ and the **far-field**⁸, which is located beyond a distance of at least the wavelength of the radiated EMF. The measurement locations for most transmitter installations lie well within the far-field, as the wavelengths of the transmitted signals are relatively short, and the antennas are typically located many metres from any public area.

The following table identifies wavelengths for commonly transmitted signals:

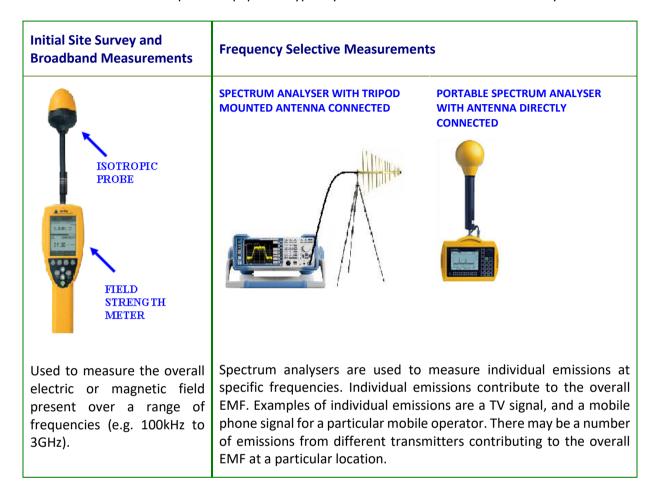
Transmitter Type	Frequency	Wavelength
PMR Low Band VHF	68 MHz	4.41 m
UHF TV	470 MHz	0.64 m
GSM 900 (mobile phone base)	925 MHz	0.32 m
GSM 1800 (mobile phone base)	1805 MHz	0.17 m
UMTS (mobile phone base)	2110 MHz	0.14 m

In the radiating near-field and far-field, only one component needs to be measured, as the other component can be readily derived from it. Normally, it is the E-field which is measured.

In the case of transmitters of very long wavelength signals, such as long wave radio (1.19 km wavelength), the H-field and E-field must be measured separately as the point of measurement will most likely lie within the **reactive near-field**⁹ region. In this region, located within a distance of at least the wavelength of the radiated EMF, the relationship between E and H becomes very complex and there is no direct correlation between both components of the EMF.

⁶ E \approx H \times Z₀ (Radiating Near Field) and E = H \times Z₀ (Far Field), where Z₀ (characteristic impedance of free space) \approx 377 Ω

⁷ Beyond a distance of max(λ , D, D²/4 λ), where λ is the wavelength and D is the antenna's largest dimension


⁸ Beyond a distance of max(5λ , 5D, $0.6D^2/\lambda$)

 $^{^9}$ Within a distance of max(λ , D, D 2 /4 λ)

Measurement Equipment

The measurement of EMFs is a complex process which involves the use of various meters, spectrum analysers, probes and antennas, appropriate to the frequencies of the emissions being measured.

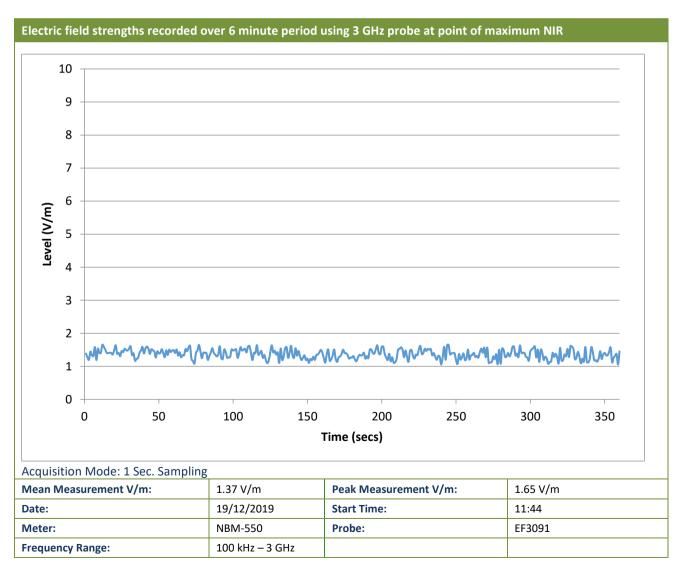
The table below shows examples of equipment typically used to measure EMFs in NIR surveys.

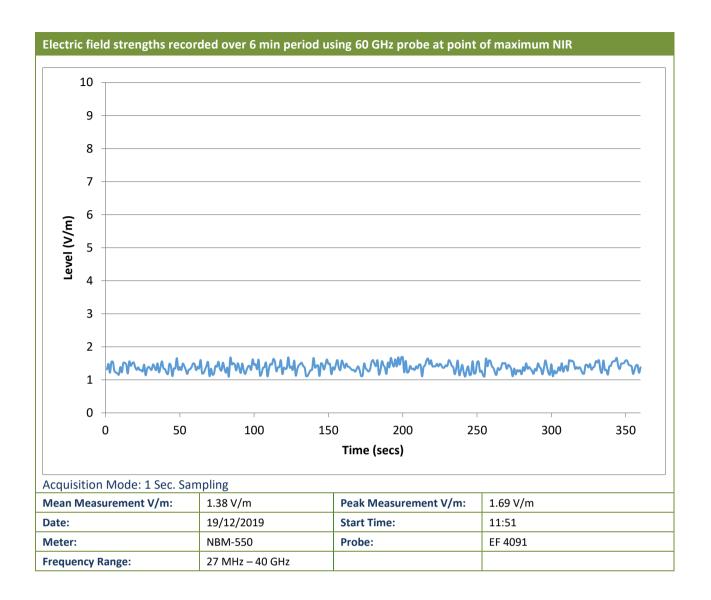
6. Initial Site Survey

An initial survey was carried out in the area around the Designated Site in order to determine the point of maximum NIR. This is the location at which the overall E-field strength level measured was somewhat higher than that measured in other areas around the site and represents the highest level of exposure to which a member of the general public might be subjected in the vicinity of the transmitter.

For this initial survey a calibrated field strength meter fitted with a **3 GHz isotropic probe** was used. The meter and probe were used to measure the sum of all electrical fields present at **all frequencies from 100 kHz up to 3 GHz**.

Once the point of maximum NIR was determined, broadband and frequency-selective measurements were conducted at that location (see following two sections). For the duration of all measurements, the various instruments, antennas and probes used were mounted on non-metallic supports.


7. Full Survey - Broadband Measurements


The purpose of these measurements was to get an overview of the intensity of the EMF present at the point of maximum NIR near the Designated Site.

There, the field strength meter (which was mounted on a tripod and fitted with a **3GHz** isotropic probe), was set to record, over a six-minute period, simultaneous measurements of the sum of all received signals within the frequency range of the probe. This measurement was then repeated using a **40 GHz** isotropic probe.

The broadband measurement results presented below show the levels in volts per metre (V/m) recorded during the six-minute period. The average and maximum levels can be compared to the lowest maximum ICNIRP Public Exposure Limits which is 28 V/m.

If a broadband measurement is higher than 28 V/m, it does not necessarily follow that the ICNIRP Public Exposure Limits have been exceeded because the limits are frequency dependent. For example, if the emissions are in the 2100 MHz (mobile phone) frequency band, then the limit which applies is higher at 61 V/m. A more detailed investigation involving frequency selective measurement is necessary to assess compliance with the ICNIRP Public Exposure Limits (see following section).

Conclusion of the Broadband Measurements

The mean and peak measurements were below the lowest ICNIRP guideline limit of 28 V/m.

8. Full Survey - Frequency Selective Measurements

Basic Measurement Procedure

A more detailed survey was performed at the point of maximum NIR near the Designated Site to identify the individual transmit frequencies and field strengths of each type of emission (e.g. mobile phone (GSM, UMTS and LTE), wireless broadband, TV, radio signals etc.) and their contribution to the total EMF.

The measurements were performed using spectrum analyser equipment and a range of antennas to match the frequency bands in which emissions were measured.

Table of Measurement Results

A list of the measurements made is presented in the table on the following page. For each emission measured, the table shows:

- Emission Type (e.g. GSM or UMTS mobile phone, TV etc);
- Transmission **frequency** of the signal;
- Measured Level (in volts per metre (V/m));
- Adjusted Level (if applicable to account for the characteristics of certain signal types or to compensate for limitations of measurement equipment or to estimate emissions for maximum call or data traffic); and
- ICNIRP Public Limit.

Further details of Adjusted Level/s and ICNIRP Public Exposure Limits are in the explanatory notes which follow the table of measurement results.

Assessment of ICNIRP Compliance of Individual Emissions

The levels for each measure (as adjusted where necessary) are compared to the relevant ICNIRP Public Exposure Limit which applies for the particular frequency of the emission. It should be again noted that the ICNIRP Public Exposure Limit varies according to frequency - the limits for the different measurements presented in the tables will vary as the measurements have been performed at different frequencies.

Assessment of ICNIRP Compliance of Cumulative Emissions

The levels measured for individual emissions are used to calculate **Total Exposure Quotients** to assess the cumulative effect of individual emissions from multiple transmitters. Further details of these quotients are in the explanatory notes which follow the table of measurement results.

The calculated values of the Total Exposure Quotients must be ≤ 1 in order for the aggregate of multiple measurements to satisfy the criteria of the ICNIRP Public Exposure Limit.

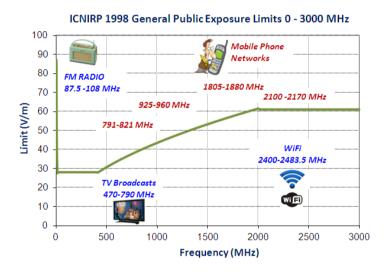
Table of Frequency S	Selective Measureme	ent Results			
Emission Type	Frequency (MHz)	Measured Level (V/m)			Times below Limit [adjusted Values]
FM Radio	88.500	0.01436	0.01436	28.0	1949.861
FM Radio	100.290	0.01413	0.01413	28.0	1981.599
FM Radio	94.890	0.01325	0.01325	28.0	2113.208
FM Radio	98.080	0.01144	0.01144	28.0	2447.552
FM Radio	90.680	0.01124	0.01124	28.0	2491.103
FM Radio	105.980	0.01034	0.01034	28.0	2707.930
FM Radio	102.190	0.00953	0.00953	28.0	2939.015
FM Radio	106.770	0.00898	0.00898	28.0	3117.346
FM Radio	104.410	0.00857	0.00857	28.0	3268.355
FM Radio	105.190	0.00837	0.00837	28.0	3346.880
FM Radio	92.900	0.00762	0.00762	28.0	3675.988
FM Radio	103.780	0.00695	0.00695	28.0	4027.039
FM Radio	96.690	0.00597	0.00597	28.0	4690.117
FM Radio	91.280	0.00567	0.00567	28.0	4935.660
T-DAB	227.260	0.01532	0.01532	28.0	1827.676
TETRA	REDACTED	0.00541	0.00937	28.0	2987.582
TETRA	REDACTED	0.00512	0.00886	28.0	3160.471
TETRA	REDACTED	0.00421	0.00730	28.0	3837.125
TETRA	REDACTED	0.00252	0.00357	28.0	7853.625
TETRA	REDACTED	0.00207	0.00359	28.0	7798.267
TETRA	REDACTED	0.00150	0.00260	28.0	10770.025
TETRA	REDACTED REDACTED	0.00142	0.00246	28.0	11384.372
TETRA	REDACTED	0.00141	0.00244	28.0	11489.558
TETRA	REDACTED	0.00123	0.00213	28.0	13142.933
TETRA	REDACTED	0.00123 0.00120	0.00212 0.00207	28.0 28.0	13196.578 13505.269
TETRA TETRA	REDACTED	0.00120	0.00207	28.0	13972.176
PMR	REDACTED	REDACTED	REDACTED	REDACTED	
DVB-T	569.890	0.07999	0.09439	32.8	5273.881 347.761
DVB-T	547.150	0.07999	0.09439	32.8	354.675
DVB-T	584.810	0.00770	0.00908	33.3	3660.107
LTE	816.000	0.00390	0.01115	39.3	3521.414
LTE	806.000	0.31210	0.89261	39.0	43.733
LTE	796.000	0.01460	0.04176	38.8	929.053
GSM	949.615	0.85260	1.70520	42.4	24.849
GSM	955.750	0.23870	0.47740	42.5	89.041
GSM	928.000	0.01858	0.03716	41.9	1127.200
UMTS FDD	953.500	0.44880	1.67596	42.5	25.334
UMTS FDD	943.000	0.25560	0.95449	42.2	44.237
UMTS FDD	937.000	0.20130	0.75172	42.1	55.991
UMTS FDD	932.500	0.02385	0.08906	42.0	471.441
GSM	1843.250	0.06965	0.13930	59.0	423.783

LTE	1815.000	0.50940	1.78455	58.6	32.826
LTE	1830.000	0.00500	0.02023	58.8	2908.160
LTE	1855.000	0.35210	1.42431	59.2	41.578
LTE	1875.000	0.02040	0.07147	59.5	833.111
UMTS FDD	2112.500	0.32560	1.02964	61.0	59.244
UMTS FDD	2117.500	0.28900	0.91390	61.0	66.747
UMTS FDD	2147.500	0.27280	0.86268	61.0	70.710
UMTS FDD	2122.500	0.27080	0.85635	61.0	71.232
UMTS FDD	2152.500	0.24240	0.76654	61.0	79.578
UMTS FDD	2157.500	0.09071	0.28685	61.0	212.653
UMTS FDD	2127.500	0.05584	0.17658	61.0	345.447
UMTS FDD	2132.500	0.01898	0.06002	61.0	1016.320
UMTS FDD	2137.500	0.01146	0.03624	61.0	1683.225
WiFi	2462.390	0.04060	0.06605	61.0	923.513
WiFi	2437.620	0.03534	0.05749	61.0	1060.968
WiFi	2421.910	0.02774	0.04513	61.0	1351.645
WiFi	2441.780	0.02476	0.04028	61.0	1514.322
WiFi	2433.220	0.02259	0.03675	61.0	1659.788
WiFi	2407.870	0.02143	0.03486	61.0	1749.632
5G NR	3655.143	0.00167	0.01422	61.0	4288.518
WiFi	5178.571	0.00258	0.01099	61.0	5548.596
WiFi	5217.937	0.00555	0.02363	61.0	2581.407
WiFi	5242.381	0.00459	0.01954	61.0	3121.003
WiFi	5498.738	0.00186	0.00792	61.0	7698.076

Total Exposure Quotients [calculated from Adjusted Levels]						
Quotient	Frequency Range	Calculated Quotient Value	Limit			
Electrical Stimulation Effects	1 Hz to 10 MHz	n/a	1			
Thermal Effects	100 kHz and above	0.007296	1			

Overall Conclusions of the Survey	
Frequency Selective Measurements: (Individual emissions measured at specific frequencies)	Below ICNIRP Public Exposure Limits (Compliant)
Total Exposure Quotient: (Assessment of cumulative emissions from multiple transmitters)	Below ICNIRP Public Exposure Limits (Compliant)

Explanatory Notes


Adjusted Levels

For some emissions, an adjusted level may be required to be derived from the measured level:

- (1) to compensate for the limited measurement resolution of the spectrum analyser. For example, a measurement of a DVB-T (digital TV) signal performed with a resolution of 5 MHz needs to be adjusted upwards using a correction factor to account for the energy present within the full 7.61 MHz bandwidth of the signal; and/or
- (2) to extrapolate to an estimate of the level under maximum traffic or duty cycle from the transmitter. For example, the base stations of mobile phone networks produce emissions which vary according to the changing volume of calls or data traffic over the course of the day.

ICNIRP Public Exposure Limits

These are set out in the ICNIRP Guidelines as reference levels for the practical assessment of exposure to electric and magnetic fields, as experienced by the general public (excluding occupational exposure and exposure during medical procedures). The limits vary according to the frequency of the emissions as illustrated in the adjacent diagram. For example, the limits for Wi-Fi in the 2400-2483.5 MHz frequency band are higher than those for FM Radio transmissions in the much lower 87.5-108 MHz frequency band

Total Exposure Quotients

The Total Exposure Quotients (which must be \leq 1) are calculated in accordance with mathematical formulas specified in the ICNIRP Guidelines to assess the cumulative effect of emissions from multiple transmitters. The quotients in this report are calculated from the Adjusted Levels rather than from the Measured Levels to account for total potential public exposure under maximum traffic conditions.

The two quotients are as follows:

(1) Quotient for Electrical Stimulation Effects (1 Hz to 10 MHz)

This quotient is calculated only in a small number of cases where strong emissions in the frequency range between 1 Hz and 10 MHz are present at the survey location (e.g. near a long wave radio transmitter site). This essentially involves summing the ratios (measured field strength/applicable limit) for each emission.

(2) Quotient for Thermal Effects (100 kHz and above)

The measurements of any emissions above 100 kHz are used to calculate a quotient to assess any thermal (heat) effects. This essentially involves summing the squares of the ratios (measured field strength/applicable limit) for each emission.